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One-way quantum computation is a very promising candidate to fulfill the capabilities of quantum

information processing. Here we demonstrate an important set of unitary operations for continuous

variables using a linear cluster state of four entangled optical modes. These operations are performed in a

fully measurement-controlled and completely unconditional fashion. We implement three different levels

of squeezing operations and a Fourier transformation, all of which are accessible by selecting the correct

quadrature measurement angles of the homodyne detections. Though not sufficient, these linear trans-

formations are necessary for universal quantum computation.
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Quantum computing promises to exploit the laws of
quantum mechanics for processing information in ways
fundamentally different from today’s classical computers,
leading to unprecedented efficiency [1,2]. The cluster
model of quantum computation (QC) is a recently proposed
alternative to the conventional circuit model [3–8]. In this
model, unitary operations are achieved indirectly through
measurements on a highly entangled quantum state—the
cluster state. Cluster computation is achieved through the
following steps: (1) preparation of an entangled cluster
state and an input state for processing, (2) entangling op-
eration on these two states, (3) measurements on most
subsystems of the cluster state and feed-forward of their
outcomes, and (4) occurrence and readout of the output in
the remaining unmeasured subsystems of the cluster.
Universality, i.e., realization of arbitrary unitary operations
is achieved by adjusting themeasurement bases, sometimes
also dependent on the results of earlier measurements [5,6].

Several experiments of one-way quantum computation
have been reported for discrete-variable (qubit) systems
using single photons [9–12]. These demonstrations of one-
way quantum computation work in a probabilistic way,
since the resource cluster is generated only when the
photons that compose the cluster are produced and de-
tected. Another typical feature of the single-photon-based
cluster computation experiments is that the usual input
states, jþi, are prepared as part of the initial cluster states.
These properties would pose severe limitations when uni-
tary gates are to be deterministically applied online to an
unknown input state which is prepared independently of
the cluster state, for instance, as the output of a preceding
computation.

In contrast, we report in this paper on unconditional one-
way quantum computation experiments conducted on in-
dependently prepared input states. These inputs, as well as
the entangled cluster state, are continuous-variable states.
The price to pay for this is a set of stronger requirements on
universality. Not only do we need at least one nonlinear
element to achieve completely universal QC over continu-
ous variables [7,13], we also have to cover all linear trans-
formations, which, for a single optical mode, consist of
arbitrary displacement, rotation, and squeezing operations
in phase space. Our scheme represents the ultimate module
for arbitrary linear transformations of arbitrary one-mode
quantum optical states. It can be directly incorporated into
a full, universal cluster-based QC together with a nonlinear
element such as measurements based on photon counting
[14] (for a discussion on the fidelity when concatenating
our module using finitely squeezed cluster states, and on its
scalability into a full, fault tolerant measurement-based
QC, see supplemental material [15] and Refs. [16–18]).
We use a continuous-variable four-mode linear cluster

state as a resource [8]. An approximate version of this
cluster state can be obtained deterministically by combin-
ing four squeezed vacuum states on an 80%-transmittance
beam splitter and two half beam splitters (HBSs) [19–21].
Recently, it was shown that the complete set of one-

mode linear unitary Bogoliubov (LUBO) transformations,
corresponding to Hamiltonians quadratic in x̂ and p̂, can be
implemented using a four-mode linear cluster state as a
resource [22]. The measurements required to achieve these
operations are efficient homodyne detections with quad-
rature angles �i, which are easily controllable by adjusting
the local oscillator phases in the homodyne detectors.
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The total procedure then consists of the teleportation-based

[23–25] coupling M̂teleð�in; �1Þ, followed by two elemen-

tary, measurement-based, one-mode operations M̂ð�iÞ
[14,26,27] (see supplemental material [15]):

jc outi ¼ M̂ð�3ÞM̂ð�2ÞM̂teleð�in; �1Þjc ini: (1)

Each step can be decomposed into three inner steps, namely,
a � rotation, squeezing, and a ’ rotation in phase space:

R̂ð’ÞŜðrÞR̂ð�Þ with R̂ð�Þ ¼ ei�ðx̂2þp̂2Þ and ŜðrÞ¼eirðx̂p̂þp̂x̂Þ

[28]. We have M̂teleð�in; �1Þ ¼ R̂ð��þ=2ÞŜðrÞR̂ð��þ=2Þ
with r ¼ log tanð��=2Þ and �� ¼ �in � �1, while M̂ð�iÞ ¼
R̂ð�iÞŜðriÞR̂ð�iÞ with ri ¼ log

ffiffiffiffiffiffiffiffi

k2iþ4
p

þki
2 , �i ¼ �

2 �
tan�1

ffiffiffiffiffiffiffiffi

k2iþ4
p

�ki
2 , and ki ¼ 1= tan�i.

In our experiment, we demonstrate four types of LUBO

transformations: the Fourier transformation F̂ ¼ R̂ð�=2Þ
(90� rotation); and three different x-squeezing operations

ŜðrÞ with r ¼ ln10a=20, a ¼ 3, 6, 10 [dB]. Figures 1(a) and
1(c) show the abstract illustration and the experimental
setup, respectively. We employ the experimental tech-
niques described in Refs. [19,29] for the generation of
the cluster state and the feed-forward process, respectively.

The Fourier transformation is achieved by choosing for
step (3) measurement quadrature angles (�in, �1, �2, �3) as
(90�, 0�, 90�, 90�), see [15].

The measurement results for the Fourier transformation
of a coherent-state input are shown in Fig. 2. As clearly
shown in Fig. 2(a), the input is a coherent state with
amplitude 17:7� 0:2 dB. The output state is shown in
Fig. 2(b). The peak level of trace Fig. 2a(i) is 17:5�
0:2 dB higher than the shot noise level (SNL), which is
the same level as the input within the error bar. We acquire
the peak of the input by measuring x, while we obtain the
peak of the output by measuring p, corresponding to a
90� rotation in phase space. These measurement results
confirm that the Fourier transformation is applied to the
input coherent state.
The quality of the operation can be quantified by

using the fidelity, defined as F ¼ h�idealj�̂outj�ideali.
In the specific case of our experiment, the fidelity for

a coherent-state input as given above is F ¼
2=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1þ 4�x
outÞð1þ 4�p

outÞ
p

, where �x
out and �p

out are the
variances of the position and momentum operators in the
output state, respectively [30]. We obtain �x

out ¼
2:9� 0:2 dB [Fig. 2b(iii)], and �p

out ¼ 2:8� 0:2 dB (not
shown) above the SNL with a vacuum input, corresponding
to a fidelity of F¼0:68�0:02. This is in good agreement
with the theoretical result F ¼ 0:71, where an average
squeezing level of �5:5 dB is taken into account.
Another fundamental element of the LUBO transforma-

tions is squeezing. A sequence of teleportation coupling

M̂teleð�in; �1Þ followed by elementary one-mode one-way

FIG. 1 (color online). (a) Abstract illustration and (c) experimental setup of one-mode LUBO transformations using a four-mode
linear cluster state. There is a 1-to-1 correspondence between (a) and (c). Squeezed vacuum states are generated by subthreshold
optical parametric oscillators containing periodically poled KTiOPO4 crystals as nonlinear media. (b) Phase space representations of
quantum states in each step of the Fourier transformation (i) and the 10 dB x-squeezing operation (ii), starting with a vacuum state
input (�) and an x-coherent state input (�) Disp.: displacement in phase space, Tele.: teleportation, Op: operation, EOM: electro-
optical modulator, HBS: half beam splitter.
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operations M̂ð�iÞ is required in order to extract squeezing
without rotations [see Fig. 1(b)(ii)].

We implemented three different squeezing operations
with three different sets of quadrature measurement angles
(�in, �1, �2, �3):

ð�42:5�; 62:4�; 63:5�; 76:0�Þ;
ð�41:4�; 72:2�; 41:9�; 74:4�Þ;

and ð�47:7�; 79:2�; 25:9�; 78:4�Þ;
(2)

resulting in 3, 6, and 10 dB x-squeezing operations,
respectively, (see supplemental material). In all these
squeezing gates, the inputs are chosen to be coherent states

with a nonzero amplitude in x (x-coherent) or in p
(p-coherent), and these amplitudes are 14:7 dB� 0:2 dB.
Figure 3(a) shows the measurement results of the 10 dB

x-squeezing operation on the x-coherent state. In this fig-
ure, the extra dotted lines are plotted for comparison, in
order to show the levels of the input state of x [Fig. 3a(v);
14.7 dB] and p [Fig. 3a(vi); SNL]. We obtain signal levels
of 5:1� 0:2 dB and 11:5� 0:2 dB above the SNL for the
measurement of the x and p quadratures of the output,
respectively. The level of the x quadrature of the output
[Fig. 3a(iii)] is about 10 dB lower than that of the input
[Fig. 3a(v)], while the variance of the p quadrature of the
output [Fig. 3a(iv)] increases by about 10 dB compared to
that of the input [Fig. 3a(vi)]. These observations are con-
sistent with a 10 dB x-squeezing operation. Note that the x
and p quadratures of the output have additional noises.
These are caused by the finite squeezing of the cluster state
and would vanish in the limit of infinite cluster squeezing.
In order to show the nonclassical nature of the output

state, we also use a vacuum state as the input [Fig. 3(b)].
The measured variance of the x quadrature is �0:5�
0:2 dB, which is below the SNL, thus confirming
nonclassicality.
Finally, we demonstrate the controllability of the one-

way quantum computations. Both theoretical curves (with
�5:5 dB resources) and measured results for the three
levels (3, 6, and 10 dB) of x squeezing are plotted in
Fig. 3(c). Three kinds of input states are used here: a
vacuum state; an x-coherent state; and a p-coherent state.
As can be seen in Fig. 3(c), the measurement results agree
well with the theoretical curves, and all the operations are
indeed controlled by the measurement bases for the four
homodyne detections.
In summary, we have experimentally demonstrated one-

way quantum computations with continuous variables. All

FIG. 3 (color online). Squeezing operations; (a),(b) 10 dB x-squeezing operation with an x-coherent input (a) and a vacuum input
(b). Trace (i): shot noise level, trace (ii): phase scan of the output state, trace (iii): measurement of x, trace (iv): measurement of p,
dotted line (v): x of the input, and dotted line (vi): p of the input. The measurement settings are the same as in Fig. 2. Traces (i), (iii),
and (iv) are averaged 20 times. (c) experimental results (dots) and theoretical calculation (solid curves) of 3, 6, and 10 dB x-squeezing
operations. Traces (i) and (ii) correspond to a p measurement with p-coherent input, and x measurement with x-coherent input,
respectively, traces (iii) and (iv) correspond to a p measurement with vacuum input, and x measurement with vacuum input,
respectively. Each data point has an error of about �0:2 dB.

FIG. 2 (color online). Fourier transformation operation;
(a) Measurement results of the input state. Trace (i) shows the
shot noise level (SNL) and (ii) shows the phase scan of the input
state. (b) Measurement results of the output state. Trace (i) shows
the SNL, (ii) shows the phase scan of the output state, and (iii)
shows the measurement result of the x quadrature with a vacuum
input. The measurement quadrature angle is determined through
the relative phase between the signal beam and the local oscil-
lator beam. The measurement frequency is 1 MHz and the
resolution and video bandwidths are 30 kHz and 300 Hz,
respectively. Traces a(i), b(i), and b(iii) are averaged 20 times.
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operations were perfectly controllable through appropriate
choice of measurement bases for the homodyne detections,
and implemented in a fully unconditional fashion. In our
scheme, arbitrary linear one-mode transformations can be
applied to arbitrary input states coming independently
from the outside. An extension to multimode transforma-
tions, though not demonstrated here, is also possible by
similar means [22]. The accuracy of our one-way quantum
computations only depends on the squeezing levels used to
create the resource cluster state. Although in our experi-
ment squeezing levels were sufficient to verify the non-
classical nature of the output states, even higher levels of
squeezing, as reported recently [31,32], may lead to in-
creased accuracies and one-way quantum computations of
potentially larger size in the near future. In order to achieve
quantum operations other than linear unitary mode trans-
formations, nonlinear measurements besides homodyne
detections would be required, or, alternatively, additional
non-Gaussian ancilla states. However, the demonstration
of the experimental capability of implementing an arbitrary
linear single-mode transformation through continuous-
variable cluster states, as presented here, represents a crucial
step toward universal one-way quantum computation.
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